
KSME International Journal Vol. 13, No. l, pp. I - 1 0 ,  199.9 1 

Vibrational Control of Underactuated Mechanical Systems: 
Control Design Through Averaging Analysis 

Keum-Shik Hong*, Kang-Ryeol Lee** and Kyo-II Lee*** 
(Received January 26, 1998) 

An open loop vibrational control for an underactuated mechanical system with amplitude and 

frequency modulation is investigated. Since there is no direct external input to an unactuated 

joint, the dynamic coupling between the actuated and unactuated joint  is utilized for controlling 

the unactuated joint.  Feedback linearization has been performed to fully incorporate the known 

nonlinearities of  the underactuated system considered. The actuated joints are firstly positioned 

to their desired locations, and then periodic oscillatory inputs are applied to the actuated joints 

to move the remaining unactuated joints to their target positions. The amplitudes and fre- 

quencies of the vibrations introduced are determined through averaging analysis. A systematic 

way of obtaining an averaged system for the underactuated system via a coordinate transforma- 

tion is developed. A manipulator in the zero gravity space can be vibrationally controlled in the 

event of  actuator failure. A control design example of the 2R planar manipulator  with a free 

joint  with no brake is provided. 

Key Words : Averaging, Feedback Linearization, Open Loop Control,  Underactuated Manip- 

ulator, Vibrational Control 

1. Introduct ion  

An underactuated mechanical system refers to 

the system with fewer number of actuators than 

the degrees of freedom that the system possesses. 

Therefore, manipulators with passive or free 

joints become naturally underactuated systems 

since the number of  control inputs is smaller than 

the number of generalized coordinates or the 

dimension of  the configuration space. Recently, 

control of underactuated systems draws great 

attention to reduce the number of actuators and /  

or sensors, and to improve the reliability by a 

fault-tolerant design of fully-actuated manipula- 

tors working in hazardous areas or with danger- 

ous materials. It is particularly important to con- 
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trol the failed joints of the space robots working 

in outer space. Referring that an active joint  is the 

one which is fully controlled via an actuator, and 

that a passive joint  is the one which has no 

actuation but equipped with a passive element 

like a brake, and that a free joint  is the one which 

can move freely, the underactuated systems are 

defined as those with passive and/or  free joints. 

Control of the unactuated parts of underactuat- 

ed mechanical systems is in general achieved by 

utilizing either kinematic or dynamic couplings. 

Examples of the kinematic coupling are provided 

by first order nonholonomic systems such as 

wheeled mobile robots and dextrous robot hands 

(Murray et al., 1994). The equations of these 

systems are drift-free with input entering linearly 

as 
q 

= lgi(x) ul 

where each gi: / r162 is assumed to be a 

smooth vector field, each input ztl is a piecewise 

analytic function of  time, and q <,5 is assumed in 

general, where p and q denote the dimension of 



"2 Keum-Shik  Hong, Kang-Ryeol  Lee and Kyo- l l  Lee 

the vector space considered and the number of 
inputs, respectively. The second class of systems 
characterized by dynamic coupling is provided by 

numerous examples; a crane system, the classical 
cart-pole system, the Acrobot, and the manipula- 
tors with flexible elements. The equations of the 

second class involves a drift term accounting for 

gravitational, centripetal, Coriolis, and/or elastic 
forces with inputs entering affinely as 

q 

=/(x) + ~ g , ( x )  u, 

where the first term f ( x ) :  R'--- ,  R p is called a 
"drift" term because in the absence of control 
input, the motion drifts in the direction of the 

vector field f .  
The class of underactuated systems considered 

in this paper belongs to the second class, it is also 
noted that underactuation does not always imply 
uncontrollability. The controllability depends on 

the structure of the system considered. All the 
examples in the above are controllable. However, 
in the case of the planar 2R manipulator in 

section 4 all linearized equations at any operating 

points are not controllable. 
The underactuated system with passive joints 

has been investigated by several researchers. Arai 
and Tachi (1991) proved that the number of 
active joints must be equal or greater than the 
number of passive ones in order to control the 
passive ones. They also developed a Cartesian 

space controller to bring all joints to their desired 
set points (Arai et al., 1993). Saito et al. (1994) 
developed a two link underactuated brachiation 

robot which is capable of moving along crossbars 
using only one actuator. Bergerman and Xu 
(1996) investigated a variable structure control 
for three link manipulator with one passive joint 
in both joint and Cartesian spaces. One control 

strategy for underactuated systems with passive 
joints is to move the passive joints to set points 

first and lock them with brakes, and then control 

the remaining active parts. Compared with the 
works for the systems with passive joints, controls 
of the systems with free joints are rare. 

Recently, scholastic papers which applied peri- 
odic oscillations to control the manipulators with 

free joints have appeared (Suzuki et al., 1996; 
Suzuki and Nakamura, 1997). Note that the 
active joint variables appearing in the unactuated 
joints dynamics can be considered as varying 

system parameters. Therefore, the periodic move- 
ment of an active joint provides a parametric 
vibrational control to the dynamics of unactuated 

joints. Suzuki et al. (1996) and Suzuki and 

Nakamura (1997) investigated an oscillatory 
control based on Poincare map analysis. De Luca 

et al. (1997) also investigated a constructive open 

loop control which involves nilpotent approxima- 
tion and iterative steps. 

Vibrational control is a control technique 
which utilizes high frequency zero mean vibra- 
tions to modify the behavior of  dynamical systems 

in a desired manner. Motivated by the stabiliza- 
tion of an inverted pendulum by a fast vertical 
oscillation of the support point, the vibrational 
control theory for linear finite dimensional sys- 
tems was rigorously introduced in (Meerkov, 

1980). The theory for nonlinear systems had been 

matured in the middle of  1980's by Bellman et al., 
(1986a, 1986b). The theory has also been 

extended to the parabolic partial differential 

equations (Bentsman and Hong, 1991; Bentsman 
and Hong, 1993) and functional differential equa- 
tions (Bentsman et al., 1991; Lehman et al., 1994; 

Lehman and Shujaee, 1994; Shujaee and Lehman, 

1997). 
In this paper, a prescribed end point steering 

problem for underactuated systems with unactuat- 
ed joints via partial feedback linearization and 

vibrational control is investigated. The control 
design consists of two stages. The first stage 
linearizes the system partially, and applies a 
proper control to drive the active joints to their 
desired locations. At the end of first stage the 
positions of unactuated joints will be arbitrary. 

Then periodic inputs to the active joints are 

applied to move the remaining free joints to their 

desired positions via dynamic coupling. Proper 
magnitudes and frequencies for the oscillatory 

inputs are determined through averaging analysis. 
The contributions of the paper are as follows: 

The paper is the first investigation of vibrational 

control to underactuated systems. Averaging anal- 
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ysis is extended to the system with the derivatives 

and anti-derivatives of vibrations. A systematic 

way of  obtaining averaged systems for under- 

actuated systems is developed. The control strat- 

egy in this paper provides a viable tool in the case 

that the conventional control scheme is not avail- 

able and /o r  actuator failure occurs. The class of 

systems considered in this paper allows a drift 

term and assumes free joints with no brake. A 

manipulator  in outer space with a failed joint  

may be vibrationally controlled. The utilization 

of multiple magnitudes and frequencies of vi- 

brational inputs is proposed. 

This paper is divided into four sections. In 

Section 2, the equations of motion and partial 

linearization of underactuated systems are for- 

mulated. In Section 3, the vibrational control is 

investigated. Vibrations are introduced to an 

actuated joint  for the purpose of invoking the 

dynamic coupling. An averaged system is 

obtained. In Section 4, as an application, a planar 

2R manipulator is vibrationally controlled. An 

averaged system is also demonstrated. Conclu- 

sions are given in Section 5. 

2. Control Problem 

Consider a k degrees of  freedom open loop 

mechanism with joint  variables ql, ..., qk. It is 

assumed that each joint  has a single degree of 

freedom and only m <  k joints are active and the 

remaining l = k - m  joints are unactuated. It is 

assumed that all joint  variables, either actuated or 

unactuated, can be measured. 

Using the Lagrange method, one can derive the 

equations of motion of the system, and rearrange 

the equations so that the coordinates for actuated 

joints are grouped in q ~  R m and the coordinates 

for unactuated joints are grouped in q2~R t. 
Hence the final form of the equations of  motion 

tbr an underactuated mechanical system is re- 

presented as 

MI~ 0", +M~20"2+ C1 (q, 4 ) 4  Gl(q)=f (I) 

Mz~il~ + M220~+ C2(q, q) + C~(q) - 0  (2) 

where the vector functions C~(q, q) ~ R  '~ and C2 
(q, 0 ) ~ R  l contain Coriolis and centripetal 

terms, the vector functions G , ( q ) E R  m and (~ 

(q) ~ R  ~ contain gravitational terms, f ~ R  '~ rep- 

resents the input generalized force produced by 

the m actuators at the active joints. Hence, 

similiar to an ordinary robot, the dynamic equa- 

tions for an underactuated system can be written 

a s  

M(q)? t+C(q ,  d t ) + G ( q ) = B f  (3) 

where 

q = [ q r ,  q2r], M ( q ) = [ M : : .  M22M12]' 

Note that M is a symmetric positive definite 

matrix. 

Now consider equation (2). The term M22 is an 

invertible l •  l matrix as a consequence of the 

uniform positive definiteness of  the inertia matrix 

M in (3). Therefore, we may solve for q'z as 

i/'2 = - -  M A  1 (M21 0"1 + (2'2 + G2).  (4)  

Substituting (4) into (1) yields 

M~I 0"1 + C1 + G, = /  (5) 

where /1411-- M . -  MIeMiil Mzl, C1"- C I -  MI2Ms 
Cz, and C;~=G~-M~2Mfi~G2. A partial feedback 

linearizing controller can therefore be defined for 

equation (5) according to 

where u ~ R  m is an addit ional control input yet 

to be defined. Note that the m •  m matrix M .  is 

itself symmetric and positive definite. The com- 

plete system up to this point may be written as 

O'~=u (6) 
M22(q) 0'2-+-C2(q, (t) +G2(q)=--M2~(q)u (7) 

Since the input-output  relation from u to q~ in 

(6) is linear, the active part qwdynamics has been 

completely linearized. However, considering the 

full state vector q only partial linearization has 

been achieved. 

3. Vibrational Control and Averaging 

Vibrational control is a control technique 

which utilizes the high frequency zero mean 
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vibrations in the system to modify the behavior of 
the dynamical system in a desired manner. The 

parameters in which vibrations are introduced 
could be either system parameters or control 

input. 
The method of averaging is an asymptotic 

method which permits the analysis of dynamic 
behavior of  a time-varying system via a time 
-invariant (averaged) system, which is obtained 

by averaging of the right hand side of the original 
time-varying system. In this paper once all the 

active joints reach their desired set points, peri- 
odic inputs are applied to the active joints for the 
purpose of moving the remaining unactuated 

joints to their target positions via the dynamic 
coupling. Since the input is periodic, each active 

joint returns back to its original position in each 
period. The design issue now becomes how to 
move the unactuated joints to their set positions. 

Since the system becomes time-varying, the input 
magnitudes and frequencies are calculable 
through the trajectory analysis of an averaged 

system. 
Define state variables as x = [-qz, 0,,] r E R n  in 

which n'-21. Then the state equation for (7) 

becomes 

2 = -- Mfi' (x .  ql) { C= (xl, x.,, q,, q 1) 
+ G ( x , ,  q~)+M~l(Xl, ql)01} 

def 

- - = X ( x ;  al, Ol, /[3 (da) 
dcf 

...... X (x, ,2) (db) 

where X:  R"---* R". In (8a) ql, c)1, and //'1 are 
considered as system parameters. In (db) ,~ is 
introduced in order to emphasize one selective 
parameter in which vibrations are introduced. It 

is remarked that only a subset of {ql, 01, //'1} may 
appear in (8a) depending on the structure of the 

underactuated systems considered. A is taken as 

the second highest term among {ql, 01, //'1}. For 
example, if ql and ql appear in (8a), then ,~=qv 
Assuming that all ql, 0a, //'~ exist in (8a) intro- 

duce an oscillatory input into (8b) as follows 

def 

A(t)  - -  q l ( t )  --, Ao+ 7 ( t ) ,  

where 

7( t )  = a /  (cot) (9) 

In(9), Ao is a constant, and 7( t )  is a zero mean 
periodic function in which a and co are amplitude 
and frequency, respectively. The following rela- 

tions hold 

//'l=acof'(cot), and q l = ~ F ( w t )  (10) 

where f '  and F are the derivative and anti-deriv- 
ative o f f ,  respectively. Substituting (9) and (10) 

into (8) yields 

~ = X ( x ,  ,~0+ r ( t ))  
X~ 

- M~X(xv~-F(cot){C2(xl,x2,~F(cot), 

= a/(cot) ) + 62 (x,, -a-F (cot)) 

+ao)M.~,(x,, ~F(wt )  ) f'(cot) } 

( l l )  

It is now assumed that (11) can be decomposed 
into two parts as follows; 

I 
2 =X0(x ,  wt, ~ )  +coXt(x, wt). (12) 

The second term consists of the terms which 
involves the derivatives of ,~ (t) .  Now, the second 
term is utilized as the generating equation which 
transforms (12) into a standard form as follows; 

8 - X , ( 8 ,  t). (13) 

Let h(t,  c):  R •  n---* R be the general solution 
of (13) which is T-periodic. Note that c ~ R  n can 
be uniquely defined once initial conditions ~e (to) 

~ d 2 C R  are provided. 
Introduce a new variable q (t) as follows; (the 

Lyapunov substitution) 

x ( t ) = h ( w t ,  q(t)  ), (14) 

Differentiating both sides of (14) with respect to 

t, the following is obtained 
- i  

q ( t ) ) ,  cot, •  (15) 
co ' 

In slow time scale such that r---cot with z ( r )  = q  

(t) and e =  I/co, the following standard form is 

obtained. 
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r " z ( v ) ) ]  X0(h ( r , z ( r ) )  
~ ( r ) =  L .... 3z .......... J 

r, r (16) 

All the above derivation is now summarized in 

the following theorem. 

Theorem 1: Consider an underactuated system 

(8) with the assumption (12). Then, there exists 

a transtbrmation h: R+•  R n---~ R ~ under which 

the system is transformed into the following stan- 
dard form 

~ = e / ( z ,  t, ~) (17) 

where z ~ - U ~ R ' * ,  0<r f :  R ~ X R x R  + is T 
-periodic. m 

Finally, an averaged system is defined as 

where 

(18) 

d~r 1 /" ~' 
? ( Y )  ~-TJo f ( Y '  r, 0 ) d r  (19) 

- ,  

I / ~ [ a h ( r ,  y) ] 
X0(h(v, y) ,  

= T Y 0  L ~ J 
r, 0 )d r  

By applying the theory of averaging, it is known 

that there exists e0>0 such that for all 0<  r162 
the hyperbolic stability properties of (17) and 
(18) are the same. 

Theorem 2 (The Averaging Theorem, Gucken- 

heimer and Holmes (1983), p. 167): There exists 

a CL r ~ 2 ,  transformation of coordinates z = y  

-+ r (y, t, e-) under which (17) becomes 

~ = r  t, r 

where f~ is of  period T in t. Moreover 
(i) I f z ( t )  and y ( t )  are solutions of (17) and 

(18) based at z0, y., respectively, at t = 0 ,  and ]z0 

-y0l=o(r then Iz(t)-y(t)l=o(e) on the 
time scale t ~  l/e, 

(ii) if p. is a hyperbolic fixed point of (18) 

then there exists ~o>0 such that. for all O< e<c0, 

(17) possesses a unique hyperbolic periodic orbit 

7~(l) = P o +  0 (r of  the same stability type as P0. 
(iii) If z ' ( t ) ~ W S ( 7 ~ )  is a solution of (17) 

lying Jn the stable manifold of the hyperbolic 

periodic orbit 7 ~ = p o + O ( r  y ' E W ' ~ ( p o )  is a 
solution of (18) lying in the stable manifold of 

the hyperbolic fixed point Po and Iz ' (O) -ys (O) l  

= O ( r  then ] z ~ ( t ) - y ~ ( t ) [ = O ( r  for tc~ 
~0, c~). Similar results apply to solutions lying in 

the unstable manifolds on the time interval t ~  

( - ~ ,  0]. �9 

4. Application 

In this section, an example of underactuated 

mechanical system with free joint; a planar 2R 

manipulator is introduced. In the case of  2R 

manipulator linear control theory is not appli- 

cable since the linearized system at any operating 

point is not controllable. 

4.1 A planar 2R manipulator 
Figure 1 shows a planar 2R manipulator on the 

horizontal plane. Using the Lagrange equation, 

the following equations of motion are obtained. 

m,,(Oz) Ol+m,2(0~) g~+C,(0~, O,, O2)=r 
m,2(O~) ~,+ M.,2(0~) #2+ C2(02, 0,, t)~)=0 

where 

M~1( 02) = m, lL .+ m2llZ + m2l.~c + 2 m212cl, cos 02 

+I ,+12 ,  
M~2 ( 02) = m21~ + m.~s~ l, ccos 02 + 12, 

M2z "- ;n2 l~c + I,~, 
C~(t~, t~,, O2)=-m212~l, s inOz(20,02+ O~-~. 
Cz ( 02, O j, 02) = 2 mzlzcl, O 2sin O:. 

Note that the gravity term does not appear in the 

equations, and check that the linearized system at 

an operating point (01, 0z, t~,, t~2) = (0,, 02) is not 
controllable. 

Following the procedure in Sec. 2, the follow- 

ing partially linearized system is obtained 

,naive Joint : / ' " ~  /1 

Fig. 1 A planar 2R free-joint manipulator, 
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0"~ = u (20a) 

0"2 = -- ( 1 + ncos 02) 0"1-- n (01) 2sin & (20b) 

where n=m, , l l l zc / (m2l]c+I2)  is a constant. Now 
assume that the active joint 01 has been positioned 
at its desired location with an appropriate control 
action. For instance, 

u =  b',a+ k~ ( 0 , . - -  01) +k~(01a-- 0,) 

would suffice. Now restricting our control task to 
the second equation, 0'1 and 0~ become varying 
parameters in the 02 dynamics. Define the state 
variables as x~ = 02, x2 = 0.:,. Then the state equa- 
tion becomes 

~ =x2. x~ (0) ----x~0 
~2= -- (1 + ncosxl) i f ; -  nsinxl (01) 2, 

x2(0) =x~o (21) 

Introduce vibrations (9) in Sec. 3 as follows; 

i t ( t )  = O~ ( t ) = asincot (22a) 

Then, the following also holds 

01 (t) = - ~ o s c o t ,  and 0~ (t) =acocoscot 
CO 

(22b) 

Substituting (22a, b) into (21) yields 

[ ~: ]  = [ - nsinxl(asin w/,) 2 ] 
F 0 ] 

+ C23) 

Note that (23) is in the form of (12). Therefore 
the generating equation of (13) takes the form 

[ ~2] = [ _  acost, (1.+ ncos~l) ]. (24) 

A general solution of (24) is 

=[h l ( t ,  c) ] 
h( t ,  c) Lh2(t,  c)J  

C1 

= [C2__ O/( ] + .COSc1)sirl/. ] (25) 
A coordinate transformation through (25) is 

defined as 

Ix, (t) ql (t) 
x2( t )  ]=[q2Ct)  - a ( l  + n c o s q ~ ( t )  ) s in t ]  " (26) 

Therefore, under (26) (15) takes the form 

c) 1 (t) = q2-- a ( I + ncosql) sin wt,  ql (0) = xlo 
(l'e ( t ) = nasinqlsin wt  ( -- q2 + naCOSqlsin wt),  

q2 (0) :x20 (27) 

in slow time r = w t  with q ( t )  = z ( r ) ,  and e : l /  
w, the following standard form is obtained 

~.+;+ (r) = E Ezz- a ( 1 + ncoszl) sin r] ,  

z~ (0) = x~o (28) 
~2 (r) = enasinz~sin r ( - z2 + nacosz~sin r) ,  

z2 (0) = x~0 

Finally, by applying the definition of averaging, 
Eq. (19), the following averaged system is 
obtained. 

y ,  = Ey2, y~ (0) : x l 0  (29) 
n2r , 

y 2 = E - ~ - - s  n2y.  y2(0)=x20 

It is rloted that the initial conditions of  averaged 
systems are not in general the same as those of 
original system. 

4.2 Control design 
Figure 2 shows trajectories of transformed sys+ 

tem (27) with a : 0 . 5  co=4rc departing from 
various initial states. Figure 3 shows a phase 
portrait of (29). Comparing Fig. 2 with Fig. 3, it 
is observed that the behavior of transformed 
system (27) is well described by that of the 
averaged system (29). Figure 4 shows the trajec- 
tories of the averaged system with different a's. It 
is observed that an arbitrary state can be reached 
by modulating a. It is also noted that changing co 
does not influence the averaged behavior. H o w -  
ever, by increasing co the amplitude of 0t( l)  in 
(22b) gets smaller and Poincare map gets dense. 
Therefore, more precise movement can be 
achieved by increasing co. 

r~+e+ ~ ,.~"~ ~ 'i / '~ i  E ' ~ .  i l 
o.4 ' - ..... ' - :'------~,' -----~- -' ...... , 

o+ i ...... L _.~ ...... i . . . . . . . . .  i 

0 2  :, . . . . . . .  , . . . . . .  i ..... i 

~ ....... + ....... q~ : ...... r ....... " ....... 7" 

3 2 1 o 1 2 3 
q l  z~4 

Fig. 2 Trajectories of transformed system (27) with 
a=0+5, c0-- 4zr. 
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04 ~ . . . . . .  " - & . . . .  - - " : ' , - 4 ~ -  - . . . "  . . . . . . . .  

Y.. "~ ~, ~ . . . . . .  i . . . . . . . .  

- 0 . a  * . . . . . . . . . . . . . . . .  

- '  i ~  - 2  21 o 1 2 
y~ r.d 

Fig. 3 Phase portrait of averaged system (29) with o' 
=0.5, w = 4:zr. 

,,sd]~ec i i ~ L o.* i : : 

Ya 0 
-0.1  

- 0 2  

- 0 3  

- 0 A  

-05 l ', l { ', { 

0.5 1 1.5 2 2.5 3 

Yi rad 

Fig. 4 Trajectories of averaged system (29) with 
various a's (co=4~r). 

Let (yl, Yz) be a present state and (yla, Y2a) be 

a desired state. F r o m  (29) the fol lowing relat ion-  

ship holds 

~'Z2 012 2 -- n 2 0 ~  2 
~- cos  y~•  (30) 

Therefore,  the ampl i tude  of  the v ibra t ions  to be 

in t roduced is calculated as tbllows: 

a +- ~ z 2 - -  Y2}) (31) 

Due to the flow of  system (29) posi t ioning prob-  

lems may slightly differ depending on initial  and 

target posit ions.  Fou r  control  strategies are sket- 

ched in Fig. 5, Specifically,  consider  a posi t ioning 

problem from the initial state (0.5, 0) to the 

desired state (l+0, 0) which corresponds  to the 

case of  Fig. 5(a) .  One can provide  vibra t ions  

with frequency co and ampl i tude  a~ to the active 

jo in t  0p When 02 reaches z / 2 ,  the input ampli-  

tude in the second quarter  is switched from ~, to 

a~a• for the purpose  of  reducing t ime to travel. If 

& begins to decrease, which corresponds  to the 

Y2 

I 

I 

(a) Pattern #1 

Yl 

# 

Y2 
+ 

v i ,~- 
,i x / 2  
! Yl 

(b) Pattern #2 

)5 

I I 

I I 
I I 

I I 
, i 

(c) Pattern #3 

t i 

4 ~  V 

r ~r M2 

F i g .  5 

(d) Pattern #4 

Control strategies. 
( x  " Initial state, 0 " Desired state) 

2z 

if 

)t 

point  that  the averaged trajectory crosses the 
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Table 1 Control patterns based upon initial and 

desired positions. 

E~-, Jr) 
&o 

zc #1 #2 #3 #4 [o, 2-) 

[~r. X) #2" #1' #4' #3' 

[~-, 3L) #3 #4 #1 #2 

[~- ,  2~r #4' #3' #2' #1' 

1) ' denotes patterns in which initial and desired 

positions are reversed. 

2) t}z(O) "'- 0"~d=0 are assumed. 

hor izonta l  axis, the ampl i tude  is switched again  

to G3 which is supposed to be smaller  than av 

Final ly ,  when 02 becomes zr/2, we now enter the 

last cruis ing quarter  to the target posi t ion.  The 

ampl i tudes  in the last quarter  are cont inuous ly  

modula ted  according to law (31) in each oscil la- 

tion. The above is summarized  as pattern #1 

helow. Cont ro l  a lgor i thms according to various 

initial  and desired states are summarized in Table  

Pattern #1 
(1) Set G=a~ and co=co~. (In Fig. 6 fit---0.5 

and wl=4z are used.) 

(2) If 02(t) becomes zr/2, then switch a=a,,~x. 
(In Fig. 6 ffmax=0.7 is used.) 

(3) I f  02(l) becomes less than its previous 

value, then switch a =  as, where a.~ < a~. 

(4) If 02(t) becomes jr/2,  then change a se- 

quent ia l ly  in each step according to (31). 

(5) Final ly ,  if 1102(t)&ll<~, then switch c0= 

co2 (In Fig. 6 coz=8zr is used.) 

Pattern #2 
( 1 ) Set a = a~ and co = co~. 

(2) If 02(t) becomes ~r/2, then change a se- 

quent ia l ly  in each step according to (31). 

(3) Final ly ,  if II0~(t) 0~ll<~, then switch co--- 

0)2- 

Pattern #3 
(1) Set a =  a~ and co= co~. 

(2) I f  02(t) becomes re/2, then choose a~<a 

rnOsee 0.4[ ........... i i " i 
0 s ~ .......... ~ ........... :.~..-*:-- ~ --~-4-~ .......... 

o2 [ .......... ?---..~:--< .......... 4 .......... ~i-~---: . . . . . . . . .  
o , ~  . . . . . . . .  ~ , ~ ,  . . . . . . .  - . . . . . . . . . .  . .  . . . . . . . . .  , - - - - - . - - .  

~o~t ~163 ......... J . . . . . . . .  ~ . ~ . "  . . . . . . . . . . . . . . . . .  ~ _ _ _ .  

~ I o15 ' ~  i15 i 25 
ql ~ 02 na 

Fig. 6 Positioning from initial angle 02=0.5 tad to 
terminal angle 02=1.0 tad via Pattern #1 
(a~=0.5, a,,~x=l, ot~=0, col=4~r, co2-'8x). 

2 s /  . . . . . . . . . .  i . . . . . . . . . .  . . . . .  

Fig. 7 The motions of the free joint  with vibrational 
controls: 
1) Upper plot (1.0, 0) ---, (2.5, 0) 
2) Lower plot (0.5, 0) .-* (1.0, 0) 

- [ 2yf 
(st, 0)=~/-n~-ii- ._C~sTy ~ -  where a(~r, 0) is 

the magni tude  of  v ibra t ions  whose averaged 

trajectory passes through (rr, 0). 

(3) If 02(t) becomes 3a-/2, then switch a ,= 

~/nl/t x �9 

(4) If  02(t) becomes less than its previous 

value, then switch a=-a4, where ff4~G~. 

(5) If  02(r becomes 3~r/2, then change a 

sequential ly  in each step according to (31). 

(6) Final ly ,  if 1102(t)0~11<#, then switch co = 

o)2. 

Pattern #4 
( l ) ,  (2) are the same as Pattern #3. 

(3) I f  02(l) becomes 3a ' /2,  then change a 

sequential ly  in each step according to (31). 

(4) Final ly ,  if IlOz(t) Odll<& then switch co .... 

(02. 

Final ly ,  it is noted that  the first l ink needs to be 
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The oscillating motion of the first joint for 
the second case of Fig. 7, i.e. 
(o.5, 0) ...... (~.o, o) 

stopped at the exact period of input in order to 

keep it at its desired position. It is also noted that 

once the free link crosses over its target position, 

there is no return and it has to go all the way 

around again. Therefore, just before getting to the 

target position the input frequency needs to be 

increased. A precise ending is shown in Fig. 6 at 

the last stage of control. 

5. C o n c l u s i o n s  

Open loop vibrational control for underactuat- 

ed mechanical systems was investigated. An 

important example of this class is the system with 

failed actuators. The control strategy to move an 

unactuated joint in this paper is to utilize the 

dynamic coupling between the actuated and 
unactuated parts, which occurs when oscillating 

the actuated joint. With the vibrations introduced, 

the whole system becomes time-varying, Hence, 
the stability analysis of  the time-varying system is 

carried out through the averaging analysis. The 
averaging method was extended to the system 

with the derivatives and anti derivatives of the 

vibrations introduced. A systematic way of 

obtaining averaged systems via the generating 

equations for underactuated systems was devel- 

oped for the firsl time, To illustrate the design 

procedure, a 2R planar manipulator with a fi'ee 

joint was demonstrated. The calculation proce- 

dure of the amplitudes and frequencies of vibra- 
tions was demonstrated. In the zero gravity outer 

space the manipulator with a failed joint can be 

controlled in this approach. The control strategy 

in this paper provides a viable tool when the 

conventional control scheme is not applicable 

and/or actuator failure occurs. 
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